Overview
My lab studies teaching and learning in physics and other science, technology, engineering, and math (STEM) courses. We study research questions such as how students acquire skills or content knowledge, how different course environments affect student learning, motivation, or persistence in physics (or other STEM fields), and how they develop an understanding of the nature of science and scientific measurement. We spend considerable time worrying about how we know what outcomes are being achieved and what mechanisms are responsible those outcomes. We use both qualitative (e.g. observations, interviews, and focus groups) and quantitative methods (e.g. test scores, instances of pre-defined actions or activities) to explore the many possible variables that affect student learning and their experiences in physics and STEM courses.
Research Focus
Our largest research focus is on the efficacy of hands-on laboratory courses. Our research questions in this area focus on: How do we know what labs are achieving (assessment)? What teaching methods improve outcomes (pedagogy)?
Assessment: We measure student outcomes using closed-response (e.g., multiple-choice tests and surveys) and open-response (e.g., student writing) instruments. We previously developed the Physics Lab Inventory of Critical thinking to assess students’ critical thinking skills as related to introductory physics lab courses and an analogous instrument for ecology courses. We have also developed "coding schemes" to characterize students' written responses to survey questions and their submitted lab notes. We have used these to evaluate, for example, students' reasoning about uncertainty and measurement in both classical and quantum mechanics, their perspectives on the nature of experimental physics, and their experimental decisions during lab. We are actively evaluating natural language processing methods for scaling analysis of written text.
Pedagogy: We conduct both small and large scale experiments to test the impacts of different teaching methods on student learning, attitudes and motivation, and skills development. Small scale projects include evaluating a single learning activity in an interview or classroom setting. Larger scale projects include redesigning an entire course or course sequence using new or evidence-based teaching methods to achieve different learning outcomes. Currently, we are evaluating the efficacy of Course-based Undergraduate Research Experiences as applied to introductory physics labs.
Other interests: Our lab also explores student experiences, such as understanding how and why students choose and persist in their major of study. We also study how students experience groupwork in labs, including navigating social dynamics and biases. Lastly, we are also interested in exploring the relationship between coursework and student research experiences. Given their well-documented benefits, understanding the mechanisms and characteristics of undergraduate research experiences could help inform other classroom teaching (especially labs).
Graduate Students
Matthew Dew
Rebeckah Fussell
Olive Ross
Rachel Merrill
Publications
Sundstrom, Meagan, Simpfendoerfer, L.N., Tan, Annie, Heim, Ashley B., and Holmes, N.G. 2024. "Who and what gets recognized in peer recognition." Phys. Rev. PER, 20:010127. https://doi.org/10.1103/PhysRevPhysEducRes.20.010127
Stump, Emily M., Hughes, Mark, Holmes, N.G., and Passante, Gina. 2024. "Do students think that objects have a true definite position?" Phys. Rev. PER, 20, 010154. https://doi.org/10.1103/PhysRevPhysEducRes.20.010154
Fussell, Rebeckah K., Stump, Emily M., Holmes, N.G. 2024. "Method to assess the trustworthiness of machine coding at scale." Phys. Rev. PER, 20(1):010113. https://doi.org/10.1103/PhysRevPhysEducRes.20.010113.
Walsh, Cole, H. J. Lewandowski, and N. G. Holmes. 2022. “Skills-Focused Lab Instruction Improves Critical Thinking Skills and Experimentation Views for All Students.” Phys. Rev. PER, 18(1), 010128. https://doi.org/10.1103/PhysRevPhysEducRes.18.010128.
Heim, Ashley B., Cole Walsh, David Esparza, Michelle K. Smith, and N. G. Holmes. 2022. “What Influences Students’ Abilities to Critically Evaluate Scientific Investigations?” PLOS ONE 17(8): e0273337. https://doi.org/10.1371/journal.pone.0273337.
Smith, E. M., & Holmes, N. G. (2021). Best practice for instructional labs. Nature Physics, 1–2. https://doi.org/10.1038/s41567-021-01256-6
Smith, E. M., Stein, M. M., Walsh, C., & Holmes, N. G. (2020). Direct Measurement of the Impact of Teaching Experimentation in Physics Labs. Phys. Rev. X, 10(1), 011029. https://doi.org/10.1103/PhysRevX.10.011029
Quinn, K. N., Kelley, M. M., McGill, K. L., Smith, E. M., Whipps, Z., & Holmes, N. G. (2020). Group roles in unstructured labs show inequitable gender divide. Phys. Rev. PER, 16(1), 010129. https://doi.org/10.1103/PhysRevPhysEducRes.16.010129
Holmes, N. G., & Wieman, C. E. (2018). Introductory physics labs: We can do better. Physics Today, 71(1), 38–45. https://doi.org/10.1063/PT.3.3816
Holmes, N. G., Wieman, C. E., & Bonn, D. A. (2015). Teaching critical thinking. PNAS, 112(36), 11199–11204. https://doi.org/10.1073/pnas.1505329112
In the news
- NSF-funded postdocs to research education across disciplines
- Student spotlight: Meagan Sundstrom
- Nobel Prize winner to talk about science education research
- A&S honors 23 faculty with endowed professorships
- Gender bias in lab groups not rooted in personal preference
- Best practice for instructional labs
- Center’s grants seed diverse research in the social sciences
- Physics without fear: a course for students across disciplines
- Grants fund community-engaged learning curricula
- 30 Arts & Sciences faculty honored with endowed professorships
- Study uncovers gender roles in physics lab courses
- Lepage, Pepinsky honored with Tisch professorships
- Lab instructors adapt to remote teaching
- Smooth start to virtual instruction, thanks to weeks of prep
- Video game experience or gender may improve VR learning, study finds
- Faculty mobilize to provide virtual instruction
- Inquiry-based labs give physics students experimental edge
- Putting The ‘Science’ Back Into Science Labs
- New approaches to teaching revolutionize the classroom
- Grants create engagement opportunities for students
- NSF funds two discipline-based education research projects
- Provost’s seminar celebrates innovation in teaching
- Study probes effect of virtual reality on learning
- Professors, students laud active learning physics lab course
- Carrying out Ezra Cornell’s vision in teaching, research, practices
- Faculty to share perspectives on Ezra Cornell’s vision
- Research reveals ‘shocking’ weakness of lab courses
- Education researcher Natasha Holmes transforms physics lab courses